
Page 18 FoxRockX November 2008

In my last article, I looked at techniques for reading
and writing text files. Once you’ve read a text file
into memory, or perhaps created a long string in
some other way, it’s not unusual to need to break
it up into lines, or words, or based on some other
criteria. Prior to VFP 6, you had to use different
approaches depending on the criteria for parsing.
With the introduction of the ALINES() function,
though, most simple parsing has been reduced to a
single function call.

Parsing into lines
Perhaps the most common parsing task is taking a
long string and dividing it into lines. The oldest way
to do this kind of parsing is to use AT() to find the
next end-of-line, then use LEFT() and/or SUBSTR()
to pull it out. Code like Listing 1 does the job. How-
ever, this code is inflexible since it looks only for a
CHR(13) + CHR(10) combination to end the line. A
line might end with just CHR(13) or just CHR(10).
It’s also slow; I’ll discuss timing a little later on.
Listing 1. You can parse a string into lines with AT(), LEFT()
and SUBSTR(), but it’s slow and not very flexible.
nBreak = AT(CHR(13) + CHR(10), m.cString)
nLine = 0
DO WHILE m.nBreak > 0
 nLine = m.nLine + 1
 DIMENSION aContents3[m.nLine]
 aContents3[m.nLine] = LEFT(m.cString, ;
 m.nBreak-1)
 cString = SUBSTR(m.cString, m.nBreak + 2)
 nBreak = AT(CHR(13) + CHR(10), m.cString)
ENDDO
IF NOT EMPTY(m.cString)
 nLine = m.nLine + 1
 DIMENSION aContents3[m.nLine]
 aContents3[m.nLine] = m.cString
ENDIF

Looking a little bit outside the box provides a
second approach. The MLINE() function is adver-
tised as meant for retrieving one line from a memo
field. However, it actually works on any string.
MLINE() accepts three parameters: the string or
memo field to look at, the line number to return,
and optionally, a starting point in the string. Using
that optional third parameter improves the func-
tion’s performance significantly. Specifically, the
system variable _MLINE keeps track of where you

were in parsing a string and can be used to start
where you stopped. So rather than calling MLINE()
first for line 1, then for line 2, and so forth, by pass-
ing _MLINE as the third parameter and always ask-
ing for line 1 (after the current _MLINE position),
MLINE() can work much faster. Listing 2 shows
how to parse a string this way.
Listing 2. MLINE() lets you parse any string, not just a memo
field. Combine it with the _MLINE system variable to speed
things up.
LOCAL nOldMemoWidth
nOldMemoWidth = SET(“Memowidth”)
SET MEMOWIDTH TO 1024

nLines = MEMLINES(m.cOriginal)
_MLINE=0
DIMENSION aContents1[m.nLines]
FOR nLine = 1 TO m.nLines
 aContents1[m.nLine] = ;
 MLINE(m.cOriginal, 1, _MLINE)
ENDFOR

SET MEMOWIDTH TO &nOldMemoWidth

As the code indicates, MLINE() is sensitive to
the current SET MEMOWIDTH value. In the ex-
ample, I’ve set it to a very large value to ensure that
the lines break only on line-break characters. While
this version is more flexible and faster than the first,
it’s still quite slow, especially as the original string
gets longer.

VFP 6 introduced the ALINES() function. It ac-
cepts an array and a string and breaks the string up
into lines, putting one line in each array element.
Not only does it reduce the code above to a single
line (Listing 3), but it’s blazingly fast. The only is-
sue is that, in VFP 8 and earlier, arrays are limited
to 65,000 elements, so you can’t use ALINES() if the
string could have more lines than that. That limit is
gone in VFP 9.
Listing 3. ALINES() is the preferred method for parsing strings,
unless you hit the array size limit.
nLines = ALINES(aContents2, ;
 m.cOriginal)

To compare the speed of the three approaches,
I tested on 10 different string lengths from 8,500
characters to 85,000 (my test code is included in
this month’s downloads as BreakStringsIntoLines.

Breaking Up is Not Hard to Do
VFP provides lots of tools for breaking strings up into their component parts.

Tamar E. Granor, Ph.D.

November 2008 FoxRockX Page 19

PRG). In each case, I ran 1,000 passes. The time for
ALINES() grew linearly, that is, in proportion to the
string length. Breaking an 85,000-character string
into lines (2000 of them) 1000 times took under 2
seconds on my production machine.

The other approaches, using AT(), LEFT() and
SUBSTR(), or using MLINE(), grew much faster
than linearly. For the code in Listing 1, 1000 passes
for 8,500 characters took only about 2.5 seconds, but
for 85,000 characters, 1000 passes took almost 210
seconds. That is, as the string grew 10 times longer,
parsing it took about 100 times as long.

The MLINE() approach in Listing 2 was faster
than the AT()/SUBSTR() approach to begin with,
and maintained that advantage, but still grew
much faster than linearly. For an 8,500-character
string, 1000 passes took about 1.3 seconds. For the
85,000-character string, it grew to more than 82 sec-
onds.

Given these comparisons, it’s clear that
ALINES() is the way to go. But what if you want to
parse into something other than lines?

Parsing based on contents
Historically, to break a string into words, or divide
it up based on a separator character, we used AT()
and SUBSTR(). The code was pretty much like List-
ing 1, except that we searched for the appropriate
separator character or characters, not line break
characters.

Today, there are several better ways to perform
such a task. The approach to use depends on the ex-
act type of parsing you need. First, despite its name,
ALINES() is quite good for general parsing. In VFP
6, it could only handle lines, so to parse based on
anything else you had to convert the separators
into line breaks, as in Listing 4. You can, of course,
break this code up into two lines, one to transform
the commas into CHR(13)’s, and the second to call
ALINES().
Listing 4. In VFP 6, to use ALINES() for anything other than
lines, you had to use STRTRAN() first.

* Imagine that you want to break up a
* comma-separated string like
* “Red,Orange,Yellow,Green,Blue,Purple”
* contained in cString.
nItems = ALINES(aColors, ;
 STRTRAN(m.cString,”,”,CHR(13)))

In VFP 7, ALINES() got an additional param-
eter, the parse character. In fact, you can pass a
whole list of parse characters, separated by com-
mas. They’re applied in the order they appear in
the function call. So, the previous example can now
be written as in Listing 5.
Listing 5. In VFP 7 and later, ALINES() can parse based on
any characters you specify.
nItems = ALINES(aColors, m.cString, “,”)

As with parsing into lines, the longer the origi-
nal string, the more of an advantage ALINES() has
over a loop. In my tests, with the 6-color string
shown here, the loop took about 4 times as long as
ALINES(). With a string containing around 6,000
items, the loop took 50 times as long.

A pair of functions added in VFP 7 are de-
signed specifically for breaking strings into words.
GetWordCount() tells you how many words are in
a string, while GetWordNum() extracts a specific
word. By default, they define words as separated
by spaces, but you can pass a list of separators to
indicate all the common ways to end words. Get-
WordCount() tells you how many words are in a
string, while GetWordNum() returns a specified
word. The example in Listing 6 shows how to ex-
tract each word in turn from a string. Normally,
you’d have additional code inside the loop to do
something with that word.
Listing 6. The GetWordNum() and GetWordCount() functions
are designed specifically to break a string into words.
nWordCount = GetWordCount(cInputString)
FOR nWordNum = 1 TO nWordCount
 cCurWord = GetWordNum(cInputString, ;
 nWordNum)
ENDFOR

These two functions are really designed more
for extracting specific words than for parsing
whole strings, though. They’re much slower than
ALINES() and even slower than manually parsing
with AT() and SUBSTR(). Like manual parsing, the
slowdown is much more than linear. In my tests,
parsing a 160-character string into words 10 times
with these functions took less than .01 seconds, but
for a string of more than 80,000 characters, 10 passes
took more than 100 seconds. By comparison, using
ALINES() with the optional parse characters, the
time went from about .001 seconds for 160 charac-
ters to .08 seconds for the 80,000+-character string.

So it’s best to reserve these functions for
situations where you need to pull out only
particular words from a string. The downloads
include WordsOut.SCX, which demonstrates four
approaches, and tests their speed.

Extracting portions of a string
Sometimes, rather than breaking a string up into
its component lines or words, you need to retrieve
some portion of the string based on either position
or contents. The technique for extracting part of a
string based on position hasn’t changed over the
years; use SUBSTR().

But extracting part of a string based on the
string’s content became much easier with the addi-
tion of the StrExtract() function in VFP 7. This func-
tion lets you specify delimiters that mark the ends
of the substring you’re interested in. It also accepts
an optional parameter to indicate which occur-

Page 20 FoxRockX November 2008

rence of the delimiters you want. StrExtract() is ide-
ally suited for retrieving information from XML or
HTML strings, but can be used any time you have
data in a structured format.

Like the other parsing examples, prior to VFP 7,
this kind of task was done with AT() and SUBSTR(),
like the code in Listing 7. Listing 8 shows the equiv-
alent code using StrExtract(). There’s no doubt that
the second version is much easier to read and prob-
ably to maintain, as well. StrExtract() also provides
an easier path to extracting the strings between all
occurrences of the delimiter pair, with its optional
nOccurrence parameter.
Listing 7. You can find a string between a pair of delimiters
using AT() (or, in this case, ATC() to make the search case-
insensitive) and SUBSTR().
cResult = ""
nStartPos = ATC(m.cStart, m.cInputString)
IF nStartPos > 0
 nEndPos = ATC(m.cStop, ;
 SUBSTR(m.cInputString, ;
 m.nStartPos + LEN(m.cStart)))
 IF nEndPos > 0
 cResult = SUBSTR(m.cInputString, ;
 m.nStartPos + LEN(m.cStart), ;
 m.nEndPos - 1)
 ELSE
 * Grab rest of string
 cResult = SUBSTR(m.cInputString, ;
 m.nStartPos + LEN(m.cStart))
 ENDIF
ENDIF

Listing 8. StrExtract() makes the process much easier to read.
The price is slower execution.
cResult = STREXTRACT(m.cInputString, ;
 m.cSTart, m.cStop, 1, 1)

Unfortunately, StrExtract() is also a lot slower
than manual parsing. In my tests, when finding all
occurrences of a delimiter pair in a given string and
extracting the text between each pair, StrExtract()
was 1 to 2 orders of magnitude slower. That’s
enough of a difference to seriously consider deal-
ing with the less readable version, particularly if
you’re going to use it repeatedly (obviously, test in
your situation first and if you decide to go with the
less readable code, do yourself a favor and write a
wrapper function for it). One surprise in my testing
was that passing the flag that makes StrExtract()
case-insensitive speeds it up considerably. My
form for testing these approaches is included in the
downloads as ExtractString.SCX.

The bottom line
For parsing any string that uses a regular separa-
tor, ALINES() is always the way to go. It’s fast and
clear. For more complicated kinds of parsing, such
as finding words or finding strings between delim-
iters, you need to test your particular situation and

make a choice between more readable code and
faster code.

Sidebar: Delimiters and
Separators
Devlopers tend to toss the words “delimiter” and
“separator” around interchangeably, and the VFP
documentation doesn’t help because it misuses
them. However, delimiters and separators are actu-
ally two different things, and knowing the differ-
ence can be very helpful.

As its name suggests, a “separator” separates
things. It comes between two items of some type.
Probably the most common separator is the com-
ma. It is used in between the items of many lists.
ALINES() parses based on one or more separators.

“Delimiters” come in pairs and mark the ends
of things. For example, we use pairs of quotation
marks to delimit character strings. In HTML, we
use angle bracket pairs to delimit tags. StrExtract()
parses based on delimiters.

The worst confusion in VFP over the difference
between delimiters and separators is in the various
forms of APPEND FROM and COPY TO. Many of
the text formats (like CSV and DELIMITED) actual-
ly use both delimiters and separators. For example,
in CSV format, strings are delimited with quotes
and all fields are separated by commas. Both the
commands themselves and the Help file (while bet-
ter than it used to be) get it wrong at least some
of the time. The DELIMITED WITH CHARACTER
clause actually specifies the separator. The DELIM-
ITED WITH clause sometimes specifies a delimiter
and sometimes specifies a separator.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
She currently focuses on working with other developers
through consulting and subcontracting. Tamar is author or
co-author of nine books including the award winning Hacker’s
Guide to Visual FoxPro and Microsoft Office Automation
with VisualFoxPro. Her most recent books are Taming Visual
FoxPro’s SQL and What’s New in Nine: Visual FoxPro’s
Latest Hits. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a Microsoft
Certified Professional and a Microsoft Support Most Valuable
Professional. In 2007, Tamar received the Visual FoxPro
Community Lifetime Achievement Award. Tamar speaks
frequently about Visual FoxPro at conferences and user
groups in North America and Europe, including every FoxPro
DevCon since 1993. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

